Libreria Circulo Rojo

Librería Online. Libros en formato EBOOK, PDF y EPUB

Curvas algebraicas

Sinopsis del Libro

Libro Curvas algebraicas

Este libro pretende ser una iniciación muy elemental al estudio de las Curvas Algebraicas, y tiene como destinatarios prioritarios los estudiantes de la asignatura de Curvas Algebraicas del grado en Matemáticas, así como el doble Grado en Matemáticas y Física. La elección del material responde a la tradición de muchos de los textos que cubren la materia y a un intento por preparar (por primera vez) esta asignatura por parte del autor con el fin de facilitar su presentación a sus estudiantes. Como asunción general, y con el objetivo de facilitar tal presentación, trabajaremos fundamentalmente con coeficientes en cuerpos algebraicamente cerrados de característica cero. Aunque esto limita el uso de los resultados del texto, entendemos que facilita sustancialmente la comprensión de los resultados presentados por parte del lector que se enfrente por primera vez a esta materia. Las dos principales fuentes en las que el autor se ha basado para preparar este curso han sido: el curso de Curvas Algebraicas impartido por su gran amigo J.M. Gamboa en el año 1997 (al que tuvo el placer de asistir) y el curso de Curvas Algebraicas que ha impartido su compañero Enrique Arrondo durante los últimos 10 años [A2]. El libro tiene un doble objetivo. En primer lugar familiarizar al lector con los rudimentos para estudiar los conjuntos algebraicos afines y proyectivos, con especial atención a los del plano. Por ello, incluimos demostraciones elementales de resultados como el Teorema de la base de Hilbert, el Nullstellensatz de Hilbert, el lema de Study o el lema de colocación de Noether. El segundo objetivo consiste en recoger aquellos resultados que consideramos básicos para el estudio de las curvas algebraicas (afines y proyectivas). Todos están relacionados de forma directa o indirecta con el Teorema de Bézout, que es el resultado principal de este libro. Como el lector seguramente sabe, el Teorema de Bézout afirma que dos curvas algebraicas proyectivas de grados d y e se cortan en d · e puntos contados con su multiplicidad. En este libro las curvas algebraicas se corresponden con las ecuaciones polinómicas (salvo proporcionalidad por elementos no nulos del cuerpo base) y no con los lugares de ceros correspondientes del espacio afín o del espacio proyectivo (según el caso). Por supuesto, curvas diferentes pueden tener el mismo lugar de ceros y a cada lugar de ceros de una curva algebraica le vamos a asignar de “forma únivoca” una ecuación polinómica minimal (que como el lector puede esperar es una ecuación polinómica del lugar de ceros libre de componentes múltiples). Para demostrar el Teorema de Bézout (que es un resultado de naturaleza global) debemos empezar por estudiar las curvas (afines y proyectivas) desde el punto de vista local y analizar cómo son sus puntos. Si la curva con la que estamos trabajando no tiene componentes múltiples (es decir, es una ecuación minimal de su lugar de ceros), entonces la curva solo tiene una cantidad finita de puntos especiales (a los que llamaremos puntos singulares) y el resto de los puntos, que llamaremos puntos regulares, tendrán desde un punto de vista local todos ellos un comportamiento similar. En los puntos regulares es relativamente sencillo definir el concepto de recta tangente y estudiaremos con especial atención los puntos de inflexión, que son aquellos puntos en los que la recta tangente corta a la curva con mayor multiplicidad que en los puntos regulares genéricos. Para poder abordar su estudio de forma más sistemática analizaremos el comportamiento del Hessiano de la curva. En los puntos singulares puede haber una única tangente o varias y al producto de sus ecuaciones (con las multiplicidades adecuadas) lo llamaremos cono tangente. El conocimiento de la recta tangente o en su defecto del cono tangente, no es suficiente para entender cómo se cortan dos curvas en un punto. Para poder entender el comportamiento de las curvas en su intersección es...

Ficha del Libro

Número de páginas 218

Autor:

  • José F. Fernando

Categoría:

Formatos Disponibles:

MOBI, EPUB, PDF

¿Cómo descargar el libro?

Te indicamos a continuación diferentes opciones para descargar el libro.

Valoración

Popular

4.0

65 Valoraciones Totales


Más libros de la categoría Matemáticas

¿Para qué sirven las matemáticas?

Libro ¿Para qué sirven las matemáticas?

Ante la percepción popular de que las matemáticas son inútiles para nuestro día a día, el profesor Ian Stewart nos demuestra que esta disciplina va mucho más allá de los cálculos aburridos que todos recordamos de la escuela y nos propone un curioso recorrido por los usos de las matemáticas que a menudo permanecen ocultos a simple vista, pero contribuyen a nuestras vidas. Desde la trigonometría que mantiene un satélite en órbita hasta los números primos utilizados por los sistemas de seguridad más avanzados del mundo, pasando por los números imaginarios que permiten la realidad...

Neutrosophics Computing and Machine Learning, Book Series, Vol. 9, 2019

Libro Neutrosophics Computing and Machine Learning, Book Series, Vol. 9, 2019

"Neutrosophic Computing and Machine Learning" (NCML) es una revista académica que ha sido creada para publicaciones de estudios avanzados en neutrosofía, conjunto neutrosófico, lógica neutrosófica, probabilidad neutrosófica, estadística neutrosófica, enfoques neutrosóficos para el aprendizaje automático, etc. y sus aplicaciones en cualquier campo. Todos los trabajos presentados deben ser profesionales, con un buen uso del idioma inglés o español, que contengan una breve reseña de un problema y los resultados obtenidos.

Tablas de contingencia bidimensionales

Libro Tablas de contingencia bidimensionales

El objetivo de este libro es cubrir exhaustivamente los contenidos de un curso sobre el análisis de la independencia y la asociación entre dos variables cualitativas a partir de la información muestras recogida en forma de tabla de contingencia bidimensional. Para conseguir este propósito se proporcionan todas las herramientas necesarias para los desarrollos teóricos, así como un software estadístico para la implementación de las técnicas presentadas y la resolución de los ejercicios propuestos al final de cada capitulo, de modo que esta monografía constituya una herramienta útil...

Cálculo Integral

Libro Cálculo Integral

La obra está desarrollada con base en el nuevo programa de estudios de la materia que integra componentes, contenidos centrales, contenidos específicos, aprendizajes y productos esperados. Es un curso introductorio al cálculo integral y posibilita el aprendizaje autónomo, ya que la obra va guiando al estudiante para que deduzca, integre conocimientos y realice ejercicios. También promueve el trabajo colaborativo al proponer trabajos de investigación y realización de proyectos.

Novedades Bibliográficas



Últimas Búsquedas


Categorías Destacadas